Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.394
Filtrar
1.
J Mol Biol ; 435(24): 168344, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926426

RESUMO

Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.


Assuntos
Anticorpos Antibacterianos , Bordetella pertussis , Vacina contra Coqueluche , Coqueluche , Humanos , Lactente , Anticorpos Antibacterianos/imunologia , Bordetella pertussis/imunologia , Imunidade , Imunização , Vacina contra Coqueluche/imunologia , Coqueluche/imunologia , Desenvolvimento de Vacinas
2.
Front Immunol ; 13: 864674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677044

RESUMO

Background: Immunogenicity of acellular pertussis (aP) vaccines is conventionally assessed by measuring antibody responses but antibody concentrations wane quickly after vaccination. Memory B cells, however, are critical in sustaining long-term protection and therefore may be an important factor when assessing pertussis immunity after vaccination. Aim: We studied pertussis specific memory B cell (re)activation induced by an aP booster vaccination in four different age groups within three countries. Materials and methods: From a phase IV longitudinal interventional study, 268 participants across Finland, the Netherlands and the United Kingdom were included and received a 3-component pertussis booster vaccine: children (7-10y, n=53), adolescents (11-15y, n=66), young adults (20-34y, n=74), and older adults (60-70y, n=75). Memory B cells at baseline, day 28, and 1 year post-vaccination were measured by a pertussis toxin (Ptx), filamentous haemagglutinin (FHA), and pertactin (Prn) specific ELISpot assay. Antibody results measured previously were available for comparison. Furthermore, study participants were distributed into groups based on their baseline memory B cell frequencies, vaccine responses were monitored between these groups. Results: Geometric mean (GM) memory B cell frequencies for pertussis antigens at baseline were low. At 28 days post-vaccination, these frequencies increased within each age group and were still elevated one year post-booster compared to baseline. Highest frequencies at day 28 were found within adolescents (GM: 5, 21, and 13, for Ptx, FHA and Prn, respectively) and lowest within older adults (GM: 2, 9, and 3, respectively). Moderate to strong correlations between memory B cell frequencies at day 28 and antibody concentrations at day 28 and 1 year were observed for Prn. Memory B cell frequencies > 1 per 100,000 PBMCs at baseline were associated with significantly higher memory responses after 28 days and 1 year. Conclusions: An aP booster vaccine (re)activated memory B cells in all age groups. Still elevated memory B cell frequencies after one year indicates enhanced immunological memory. However, antigen specific memory B cell activation seems weaker in older adults, which might reflect immunosenescence. Furthermore, the presence of circulating memory B cells at baseline positively affects memory B cell responses. This study was registered at www.clinicaltrialsregister.eu: No. 2016-003678-42.


Assuntos
Células B de Memória , Vacina contra Coqueluche , Adolescente , Adulto , Idoso , Criança , Humanos , Células B de Memória/fisiologia , Pessoa de Meia-Idade , Toxina Pertussis , Vacina contra Coqueluche/imunologia , Vacinação , Coqueluche/prevenção & controle , Adulto Jovem
3.
Mol Pharm ; 19(6): 1814-1824, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35302764

RESUMO

Continuous outbreaks of pertussis around the world suggest inadequate immune protection in infants and weakened immune responses induced over time by the acellular pertussis vaccine. Vaccine adjuvants provide a means to improve vaccine immunogenicity and support long-term adaptive immunity against pertussis. An acellular pertussis vaccine was prepared with pertactin, pertussis toxin, and fimbriae 2/3 antigens combined with a triple-adjuvant system consisting of innate defense regulator peptide IDR 1002, a Toll-like receptor-3 agonist poly(I:C), and a polyphosphazene in a fixed combination. The vaccine was delivered intranasally in a cationic lipid nanoparticle formulation fabricated by simple admixture and two schema for addition of antigens (LT-A, antigens associated outside of L-TriAdj, and LAT, antigens associated inside of L-TriAdj) to optimize particle size and cationic surface charge. In the former, antigens were associated with the lipidic formulation of the triple adjuvant by electrostatic attraction. In the latter, the antigens resided in the interior of the lipid nanoparticle. Two dose levels of antigens were used with adjuvant comprised of the triple adjuvant with or without the lipid nanoparticle carrier. Formulation of vaccines with the triple adjuvant stimulated systemic and mucosal immune responses. The lipid nanoparticle vaccines favored a Th1 type of response with higher IgG2a and IgA serum antibody titers particularly for pertussis toxin and pertactin formulated at the 5 µg dose level in the admixed formulation. Additionally, the lipid nanoparticle vaccines resulted in high nasal SIgA antibodies and an early (4 weeks post vaccination) response after a single vaccination dose. The LT-A nanoparticles trended toward higher titers of serum antibodies compared to LAT. The cationic lipid-based vaccine nanoparticles formulated with a triple adjuvant showed encouraging results as a potential formulation for intranasally administered pertussis vaccines.


Assuntos
Adjuvantes Imunológicos , Lipossomos , Nanopartículas , Vacina contra Coqueluche , Coqueluche , Animais , Anticorpos Antibacterianos , Bordetella pertussis , Cátions , Humanos , Lipossomos/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Toxina Pertussis/administração & dosagem , Toxina Pertussis/imunologia , Vacina contra Coqueluche/administração & dosagem , Vacina contra Coqueluche/química , Vacina contra Coqueluche/imunologia , Vacinação , Coqueluche/prevenção & controle
4.
J Biol Chem ; 298(3): 101715, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151691

RESUMO

Infection by the bacterium Bordetella pertussis continues to cause considerable morbidity and mortality worldwide. Many current acellular pertussis vaccines include the antigen pertactin, which has presumptive adhesive and immunomodulatory activities, but is rapidly lost from clinical isolates after the introduction of these vaccines. To better understand the contributions of pertactin antibodies to protection and pertactin's role in pathogenesis, we isolated and characterized recombinant antibodies binding four distinct epitopes on pertactin. We demonstrate that four of these antibodies bind epitopes that are conserved across all three classical Bordetella strains, and competition assays further showed that antibodies binding these epitopes are also elicited by B. pertussis infection of baboons. Surprisingly, we found that representative antibodies binding each epitope protected mice against experimental B. pertussis infection. A cocktail of antibodies from each epitope group protected mice against a subsequent lethal dose of B. pertussis and greatly reduced lung colonization levels after sublethal challenge. Each antibody reduced B. pertussis lung colonization levels up to 100-fold when administered individually, which was significantly reduced when antibody effector functions were impaired, with no antibody mediating antibody-dependent complement-induced lysis. These data suggest that antibodies binding multiple pertactin epitopes protect primarily by the same bactericidal mechanism, which overshadows contributions from blockade of other pertactin functions. These antibodies expand the available tools to further dissect pertactin's role in infection and understand the impact of antipertactin antibodies on bacterial fitness.


Assuntos
Anticorpos , Proteínas da Membrana Bacteriana Externa , Bordetella pertussis , Fatores de Virulência de Bordetella , Coqueluche , Animais , Anticorpos/imunologia , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Epitopos , Camundongos , Vacina contra Coqueluche/imunologia , Fatores de Virulência de Bordetella/química , Fatores de Virulência de Bordetella/imunologia , Fatores de Virulência de Bordetella/metabolismo , Coqueluche/prevenção & controle
5.
Front Immunol ; 13: 838504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211125

RESUMO

Over two decades ago acellular pertussis vaccines (aP) replaced whole cell pertussis vaccines (wP) in several countries. Since then, a resurgence in pertussis has been observed, which is hypothesized to be linked, in part, to waning immunity. To better understand why waning immunity occurs, we developed a long-term outbred CD1 mouse model to conduct the longest murine pertussis vaccine studies to date, spanning out to 532 days post primary immunization. Vaccine-induced memory results from follicular responses and germinal center formation; therefore, cell populations and cytokines involved with memory were measured alongside protection from challenge. Both aP and wP immunization elicit protection from intranasal challenge by decreasing bacterial burden in both the upper and lower airways, and by generation of pertussis specific antibody responses in mice. Responses to wP vaccination were characterized by a significant increase in T follicular helper cells in the draining lymph nodes and CXCL13 levels in sera compared to aP mice. In addition, a population of B. pertussis+ memory B cells was found to be unique to wP vaccinated mice. This population peaked post-boost, and was measurable out to day 365 post-vaccination. Anti-B. pertussis and anti-pertussis toxoid antibody secreting cells increased one day after boost and remained high at day 532. The data suggest that follicular responses, and in particular CXCL13 levels in sera, could be monitored in pre-clinical and clinical studies for the development of the next-generation pertussis vaccines.


Assuntos
Bordetella pertussis/imunologia , Vacina contra Coqueluche/imunologia , Células T Auxiliares Foliculares/imunologia , Coqueluche/imunologia , Animais , Anticorpos Antibacterianos/sangue , Quimiocina CXCL13/sangue , Imunização Secundária , Memória Imunológica , Camundongos , Fatores de Tempo , Vacinação , Coqueluche/prevenção & controle
6.
Pediatr Infect Dis J ; 41(3): 180-185, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34711785

RESUMO

BACKGROUND: Population-level studies of severe pertussis extending beyond infancy are sparse, and none in the context of antenatal vaccination. We compared hospitalized pertussis cases from birth to 15 years of age before and after introduction of antenatal immunization. METHODS: Active surveillance of laboratory-confirmed pertussis hospitalizations in a national network of pediatric hospitals in Australia January 2012 to June 2019. Impact of maternal vaccination was assessed by vaccine effectiveness (VE) in cases and test-negative controls with <2 months of age and by before-after comparison of age distribution of cases. Among cases eligible for one or more vaccine doses, we examined proportions age-appropriately immunized and with comorbidities by age group. RESULTS: Among 419 eligible cases, the proportion <2 months of age significantly decreased from 33.1% in 2012 to 2014 compared with 19.6% in 2016 to 2019 when mothers of only 4 of 17 (23.5%) cases <2 months of age had received antenatal vaccination. VE was estimated to be 84.3% (95% CI, 26.1-96.7). Across all years (2012-2019), of 55 cases 4-11 months of age, 21 (38%) had ≥2 vaccine doses, whereas among 155 cases ≥12 months of age, 122 (85.2%) had ≥3 vaccine doses. Prevalence of comorbidities (primarily cardiorespiratory) increased from 5 (2.1%) <6 months of age to 36 (24.2%) ≥12 months of age (P < 0.001), with 6/16 (38%) cases ≥12 months of age who required intensive care having comorbidities. CONCLUSIONS: Below the age of 12 months, prevention of severe pertussis will be maximized by high maternal antenatal vaccine uptake and timeliness of infant vaccine doses. Despite full immunization, we found children ≥12 months of age accounted for 27% of hospitalizations <15 years, with 24% having comorbities, suggesting new vaccine strategies, such as additional doses or more immunogenic vaccines, require evaluation.


Assuntos
Vacina contra Coqueluche/imunologia , Eficácia de Vacinas , Coqueluche/prevenção & controle , Adolescente , Austrália , Criança , Pré-Escolar , Feminino , Hospitalização , Humanos , Imunização , Lactente , Recém-Nascido , Masculino , Vacina contra Coqueluche/administração & dosagem , Gravidez , Fatores de Risco , Fatores de Tempo , Vacinação
7.
Iran Biomed J ; 25(6): 399-407, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719226

RESUMO

Background: Pertussis is a current contagious bacterial disease caused by Bordetella pertussis (Bp). Given the prevalence of pertussis, development of new vaccines is important. This study was attempted to evaluate the expression of main virulence factors (pertussis toxin [PTX], PRN [pertactin], and filamentous hemagglutinin [FHA]) from Bp predominant strains and also compare the expression of these factors in the outer membrane vesicles (OMVs) obtained from predominant circulating Bp isolate. Methods: The physicochemical features of the prepared OMVs were analyzed by electron microscopy and SDS-PAGE. The presence of the mentioned virulence factors was confirmed by Western blotting. BALB/c mice (n = 21) immunized with characterized OMVs were challenged intranasally with sublethal doses of Bp, to examine their protective capacity. Results: Electron microscopic examination of the OMVs indicated vesicles within the range of 40 to 200 nm. SDS-PAGE and Western blotting demonstrated the expression of all three main protective immunogens (PTX, PRN, and FHA), prevalent in the predominant, challenge, and vaccine strains, and OMVs of the predominant IR37 strain and BP134 vaccine strain. Significant differences were observed in lung bacterial counts between the immunized mice with OMV (30 CFU/lung) compared to the negative control group ((6 104 CFU/lung; p < 0.001). In mice immunized with OMVs (3 µg), the number of lungs recovered colonies after five days dropped at least five orders of magnitude compared to the control group. Conclusion: OMVs obtained from circulating isolates with the predominant profile may constitute a highly promising vaccine quality. They also can be proposed as a potential basic material for the development of new pertussis vaccine candidate.


Assuntos
Bordetella pertussis/imunologia , Vacina contra Coqueluche/imunologia , Coqueluche/prevenção & controle , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C
8.
Front Immunol ; 12: 730434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603306

RESUMO

Outer membrane vesicles (OMV) derived from Bordetella pertussis-the etiologic agent of the resurgent disease called pertussis-are safe and effective in preventing bacterial colonization in the lungs of immunized mice. Vaccine formulations containing those OMV are capable of inducing a mixed Th1/Th2/Th17 profile, but even more interestingly, they may induce a tissue-resident memory immune response. This immune response is recommended for the new generation of pertussis-vaccines that must be developed to overcome the weaknesses of current commercial acellular vaccines (second-generation of pertussis vaccine). The third-generation of pertussis vaccine should also deal with infections caused by bacteria that currently circulate in the population and are phenotypically and genotypically different [in particular those deficient in the expression of pertactin antigen, PRN(-)] from those that circulated in the past. Here we evaluated the protective capacity of OMV derived from bacteria grown in biofilm, since it was observed that, by difference with older culture collection vaccine strains, circulating clinical B. pertussis isolates possess higher capacity for this lifestyle. Therefore, we performed studies with a clinical isolate with good biofilm-forming capacity. Biofilm lifestyle was confirmed by both scanning electron microscopy and proteomics. While scanning electron microscopy revealed typical biofilm structures in these cultures, BipA, fimbria, and other adhesins described as typical of the biofilm lifestyle were overexpressed in the biofilm culture in comparison with planktonic culture. OMV derived from biofilm (OMVbiof) or planktonic lifestyle (OMVplank) were used to formulate vaccines to compare their immunogenicity and protective capacities against infection with PRN(+) or PRN(-) B. pertussis clinical isolates. Using the mouse protection model, we detected that OMVbiof-vaccine was more immunogenic than OMVplank-vaccine in terms of both specific antibody titers and quality, since OMVbiof-vaccine induced antibodies with higher avidity. Moreover, when OMV were administered at suboptimal quantity for protection, OMVbiof-vaccine exhibited a significantly adequate and higher protective capacity against PRN(+) or PRN(-) than OMVplank-vaccine. Our findings indicate that the vaccine based on B. pertussis biofilm-derived OMV induces high protection also against pertactin-deficient strains, with a robust immune response.


Assuntos
Membrana Externa Bacteriana/metabolismo , Biofilmes , Bordetella pertussis/metabolismo , Vesículas Extracelulares/metabolismo , Vacina contra Coqueluche/administração & dosagem , Coqueluche/prevenção & controle , Animais , Membrana Externa Bacteriana/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Biofilmes/crescimento & desenvolvimento , Bordetella pertussis/genética , Bordetella pertussis/crescimento & desenvolvimento , Bordetella pertussis/imunologia , Modelos Animais de Doenças , Vesículas Extracelulares/imunologia , Feminino , Imunização , Imunogenicidade da Vacina , Camundongos Endogâmicos BALB C , Vacina contra Coqueluche/imunologia , Vacina contra Coqueluche/metabolismo , Desenvolvimento de Vacinas , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/metabolismo , Coqueluche/imunologia , Coqueluche/metabolismo , Coqueluche/microbiologia
9.
J Med Microbiol ; 70(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34668853

RESUMO

Whooping cough (pertussis) is a highly contagious respiratory bacterial infection caused by Bordetella pertussis and is an important cause of morbidity and mortality worldwide, particularly in infants. Bordetella parapertussis can cause a similar, but usually less severe pertussis-like disease. Bordetella pertussis has a number of virulence factors including adhesins and toxins which allow the organism to bind to ciliated epithelial cells in the upper respiratory tract and interfere with host clearance mechanisms. Typical symptoms of pertussis include paroxysmal cough with characteristic whoop and vomiting. Severe complications and deaths occur mostly in infants. Laboratory confirmation can be performed by isolation, detection of genomic DNA or specific antibodies. Childhood vaccination is safe, effective and remains the best control method available. Many countries have replaced whole-cell pertussis vaccines (wP) with acellular pertussis vaccines (aP). Waning protection following immunisation with aP is considered to be more rapid than that from wP. Deployed by resource-rich countries to date, maternal immunisation programmes have also demonstrated high efficacy in preventing hospitalisation and death in infants by passive immunisation through transplacental transfer of maternal antibodies.


Assuntos
Bordetella parapertussis/imunologia , Bordetella pertussis/imunologia , Vacina contra Coqueluche/imunologia , Fatores de Virulência/imunologia , Coqueluche/prevenção & controle , Humanos , Lactente
10.
Front Immunol ; 12: 749264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691063

RESUMO

Background: COVID-19 is characterized by strikingly large, mostly unexplained, interindividual variation in symptom severity: while some individuals remain nearly asymptomatic, others suffer from severe respiratory failure. Previous vaccinations for other pathogens, in particular tetanus, may partly explain this variation, possibly by readying the immune system. Methods: We made use of data on COVID-19 testing from 103,049 participants of the UK Biobank (mean age 71.5 years, 54.2% female), coupled to immunization records of the last ten years. Using logistic regression, covarying for age, sex, respiratory disease diagnosis, and socioeconomic status, we tested whether individuals vaccinated for tetanus, diphtheria or pertussis, differed from individuals that had only received other vaccinations on 1) undergoing a COVID-19 test, 2) being diagnosed with COVID-19, and 3) whether they developed severe COVID-19 symptoms. Results: We found that individuals with registered diphtheria or tetanus vaccinations are less likely to develop severe COVID-19 than people who had only received other vaccinations (diphtheria odds ratio (OR)=0.47, p-value=5.3*10-5; tetanus OR=0.52, p-value=1.2*10-4). Discussion: These results indicate that a history of diphtheria or tetanus vaccinations is associated with less severe manifestations of COVID-19. These vaccinations may protect against severe COVID-19 symptoms by stimulating the immune system. We note the correlational nature of these results, yet the possibility that these vaccinations may influence the severity of COVID-19 warrants follow-up investigations.


Assuntos
COVID-19/imunologia , Vacina contra Coqueluche/imunologia , SARS-CoV-2/imunologia , Toxoide Tetânico/imunologia , Vacinação , Idoso , COVID-19/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
11.
J Infect Dis ; 224(12 Suppl 2): S310-S320, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34590129

RESUMO

Pertussis (whooping cough) is a respiratory infection caused by Bordetella pertussis. All ages are susceptible. In the prevaccine era, almost all children became infected. Pertussis is particularly dangerous in young infants, who account for practically all hospitalizations and deaths, but clinical disease is burdensome at any age. Widespread use of pertussis vaccines dramatically reduced cases, but concern over adverse reactions led to the replacement of standard whole-cell by acellular pertussis vaccines that contain only a few selected pertussis antigens and are far less reactogenic. Routine administration of acellular pertussis vaccines combined with diphtheria and tetanus toxoids is recommended in infancy with toddler and preschool boosters, at age 11, and during pregnancy. Boosting in the second half of every pregancy is critical to protection of the newborn. Waning of vaccine immunity over time has become an increasing concern, and several new pertussis vaccines are being evaluated to address this problem.


Assuntos
Imunização Secundária , Vacina contra Coqueluche/administração & dosagem , Coqueluche/prevenção & controle , Bordetella pertussis/imunologia , Criança , Pré-Escolar , Vacina contra Difteria, Tétano e Coqueluche , Vacinas contra Difteria, Tétano e Coqueluche Acelular , Feminino , Humanos , Lactente , Masculino , Vacina contra Coqueluche/imunologia , Doenças Preveníveis por Vacina , Coqueluche/epidemiologia
12.
Toxins (Basel) ; 13(9)2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34564627

RESUMO

Besides the typical whooping cough syndrome, infection with Bordetella pertussis or immunization with whole-cell vaccines can result in a wide variety of physiological manifestations, including leukocytosis, hyper-insulinemia, and histamine sensitization, as well as protection against disease. Initially believed to be associated with different molecular entities, decades of research have provided the demonstration that these activities are all due to a single molecule today referred to as pertussis toxin. The three-dimensional structure and molecular mechanisms of pertussis toxin action, as well as its role in protective immunity have been uncovered in the last 50 years. In this article, we review the history of pertussis toxin, including the paradigm shift that occurred in the 1980s which established the pertussis toxin as a single molecule. We describe the role molecular biology played in the understanding of pertussis toxin action, its role as a molecular tool in cell biology and as a protective antigen in acellular pertussis vaccines and possibly new-generation vaccines, as well as potential therapeutical applications.


Assuntos
Toxina Pertussis/história , Vacina contra Coqueluche/história , Antígenos/imunologia , História do Século XX , História do Século XXI , Humanos , Imunização , Toxina Pertussis/imunologia , Vacina contra Coqueluche/imunologia
13.
Toxins (Basel) ; 13(9)2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34564636

RESUMO

Whooping cough is a severe, highly contagious disease of the human respiratory tract, caused by Bordetellapertussis. The pathogenicity requires several virulence factors, including pertussis toxin (PTX), a key component of current available vaccines. Current vaccines do not induce mucosal immunity. Tissue-resident memory T cells (Trm) are among the first lines of defense against invading pathogens and are involved in long-term protection. However, the factors involved in Trm establishment remain unknown. Comparing two B.pertussis strains expressing PTX (WT) or not (ΔPTX), we show that the toxin is required to generate both lung CD4+ and CD8+ Trm. Co-administering purified PTX with ΔPTX is sufficient to generate these Trm subsets. Importantly, adoptive transfer of lung CD4+ or CD8+ Trm conferred protection against B. pertussis in naïve mice. Taken together, our data demonstrate for the first time a critical role for PTX in the induction of mucosal long-term protection against B. pertussis.


Assuntos
Bordetella pertussis/imunologia , Imunidade nas Mucosas , Pulmão/imunologia , Células T de Memória/imunologia , Toxina Pertussis/imunologia , Vacina contra Coqueluche/imunologia , Coqueluche/prevenção & controle , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Coqueluche/imunologia
14.
Pediatrics ; 148(3)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34446538

RESUMO

BACKGROUND AND OBJECTIVES: Infant influenza and pertussis disease causes considerable morbidity and mortality worldwide. We examined the effectiveness of maternal influenza and pertussis vaccines in preventing these diseases in infants. METHODS: This inception cohort study comprised women whose pregnancies ended between September 1, 2015, and December 31, 2017, in Victoria, Australia. Maternal vaccination status was sourced from the Victorian Perinatal Data Collection and linked to 5 data sets to ascertain infant outcomes and vaccination. The primary outcome of interest was laboratory-confirmed influenza or pertussis disease in infants aged <2 months, 2 to <6 months, and <6 months combined. Secondary outcomes included infant hospitalization (emergency presentation or admission) and death. Risk ratios and 95% confidence intervals (CIs) were estimated by Poisson regression. Vaccine effectiveness (VE) was estimated as (1 minus the risk ratio) x 100%. RESULTS: Among 186 962 pregnant women, 85 830 (45.9%) and 128 060 (68.5%) were vaccinated against influenza and pertussis, respectively. There were 175 and 51 infants with laboratory-confirmed influenza and pertussis disease, respectively. Influenza VE was 56.1% (95% CI, 23.3% to 74.9%) for infants aged <2 months and 35.7% (2.2% to 57.7%) for infants aged 2 to <6 months. Pertussis VE was 80.1% (95% CI, 37.1% to 93.7%) for infants aged <2 months and 31.8% (95% CI, -39.1% to 66.6%) for infants aged 2 to <6 months. CONCLUSIONS: Our study provides evidence of the direct effectiveness of maternal influenza and pertussis vaccination in preventing these diseases in infants aged <2 months. The findings strengthen the importance of maternal vaccination to prevent these diseases in infants.


Assuntos
Influenza Humana/prevenção & controle , Vacina contra Coqueluche/imunologia , Adulto , Estudos de Coortes , Vacinas contra Difteria, Tétano e Coqueluche Acelular , Feminino , Humanos , Lactente , Recém-Nascido , Vacinas contra Influenza , Parto , Gravidez , Complicações Infecciosas na Gravidez/prevenção & controle , Gestantes , Vacinação/estatística & dados numéricos , Vitória , Coqueluche/prevenção & controle
15.
Med Microbiol Immunol ; 210(5-6): 251-262, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34338880

RESUMO

The aim of this study was to compare the elimination of Bordetella pertussis clinical isolates, representing different genotypes in relation to alleles encoding virulence factors (MLST-multi-locus antigen sequence typing), MLVA type (multi-locus variable-number tandem repeat analysis) and PFGE group (pulsed-field gel electrophoresis) from the lungs of naive mice or mice were immunised with the commercial whole-cell pertussis vaccine, the acellular pertussis vaccine and the experimental whole-cell pertussis vaccine. Molecular data indicate that the resurgence of pertussis in populations with high vaccine coverage is associated with genomic adaptation of B. pertussis, to vaccine selection pressure. Pertactin-negative B. pertussis isolates were suspected to contribute to the reduced vaccine effectiveness. It was shown that one of the isolates used is PRN deficient. The mice were intranasally challenged with bacterial suspension containing approximately 5 × 10 7 CFU/ml B. pertussis. The immunogenicity of the tested vaccines against PT (pertussis toxin), PRN (pertactin), FHA (filamentous haemagglutinin) and FIM (fimbriae types 2 and 3) was examined. The commercial whole-cell and acellular pertussis vaccines induced an immunity effective at eliminating the genetically different B. pertussis isolates from the lungs. However, the elimination of the PRN-deficient isolate from the lungs of mice vaccinated with commercial vaccines was delayed as compared to the PRN ( +) isolate, suggesting phenotypic differences with the circulating isolates and vaccine strains. The most effective vaccine was the experimental vaccine with the composition identical to that of the strains used for infection.


Assuntos
Bordetella pertussis/imunologia , Vacina contra Coqueluche/imunologia , Eficácia de Vacinas , Coqueluche/microbiologia , Coqueluche/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Bordetella pertussis/genética , Bordetella pertussis/crescimento & desenvolvimento , Bordetella pertussis/isolamento & purificação , Vacina contra Difteria, Tétano e Coqueluche/imunologia , Vacinas contra Difteria, Tétano e Coqueluche Acelular/imunologia , Feminino , Perfil Genético , Imunogenicidade da Vacina , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Tipagem de Sequências Multilocus
16.
Front Immunol ; 12: 701285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211481

RESUMO

Background: Current vaccination strategies against pertussis are sub-optimal. Optimal protection against Bordetella pertussis, the causative agent of pertussis, likely requires mucosal immunity. Current pertussis vaccines consist of inactivated whole B. pertussis cells or purified antigens thereof, combined with diphtheria and tetanus toxoids. Although they are highly protective against severe pertussis disease, they fail to elicit mucosal immunity. Compared to natural infection, immune responses following immunization are short-lived and fail to prevent bacterial colonization of the upper respiratory tract. To overcome these shortcomings, efforts have been made for decades, and continue to be made, toward the development of mucosal vaccines against pertussis. Objectives: In this review we systematically analyzed published literature on protection conferred by mucosal immunization against pertussis. Immune responses mounted by these vaccines are summarized. Method: The PubMed Library database was searched for published studies on mucosal pertussis vaccines. Eligibility criteria included mucosal administration and the evaluation of at least one outcome related to efficacy, immunogenicity and safety. Results: While over 349 publications were identified by the search, only 63 studies met the eligibility criteria. All eligible studies are included here. Initial attempts of mucosal whole-cell vaccine administration in humans provided promising results, but were not followed up. More recently, diverse vaccination strategies have been tested, including non-replicating and replicating vaccine candidates given by three different mucosal routes: orally, nasally or rectally. Several adjuvants and particulate formulations were tested to enhance the efficacy of non-replicating vaccines administered mucosally. Most novel vaccine candidates were only tested in animal models, mainly mice. Only one novel mucosal vaccine candidate was tested in baboons and in human trials. Conclusion: Three vaccination strategies drew our attention, as they provided protective and durable immunity in the respiratory tract, including the upper respiratory tract: acellular vaccines adjuvanted with lipopeptide LP1569 and c-di-GMP, outer membrane vesicles and the live attenuated BPZE1 vaccine. Among all experimental vaccines, BPZE1 is the only one that has advanced into clinical development.


Assuntos
Imunidade nas Mucosas/imunologia , Vacina contra Coqueluche/imunologia , Coqueluche/imunologia , Coqueluche/prevenção & controle , Humanos
17.
Infect Genet Evol ; 93: 104970, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34171476

RESUMO

Here we investigated nationwide clinical Bordetella pertussis isolated during 2005-2017 from different provinces of Iran, a country with more than 50 years whole cell vaccine immunisation history. Our results revealed the ongoing increase in the population of ptxP3/fim3-2 B. pertussis isolates in different provinces which were differentiated into nine clades. The largest clade (clade 8) which was previously found to be prevalent in Tehran was also prevalent across the country and clade 5 with ptxP3/prn9 genotype has also increased in frequency (14% of all ptxP3 isolates) in recent years. Furthermore, we detected the first ptxP3 B. pertussis isolates that does not express filamentous hemagglutinin (FhaB) as one of the major antigens of the pathogen and a key component of the acellular pertussis vaccine.


Assuntos
Bordetella pertussis/genética , Evolução Molecular , Genoma Bacteriano , Hemaglutininas/imunologia , Vacina contra Coqueluche/genética , Bordetella pertussis/classificação , Irã (Geográfico) , Vacina contra Coqueluche/imunologia
18.
Emerg Microbes Infect ; 10(1): 1358-1368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34132167

RESUMO

Respiratory infections caused by Bordetella pertussis are reemerging despite high pertussis vaccination coverage. Since the introduction of the acellular pertussis vaccine in the late twentieth century, circulating B. pertussis strains increasingly lack expression of the vaccine component pertactin (Prn). In some countries, up to 90% of the circulating B. pertussis strains are deficient in Prn. To better understand the resurgence of pertussis, we investigated the response of human monocyte-derived dendritic cells (moDCs) to naturally circulating Prn-expressing (Prn-Pos) and Prn-deficient (Prn-Neg) B. pertussis strains from 2016 in the Netherlands. Transcriptome analysis of moDC showed enriched IFNα response-associated gene expression after exposure to Prn-Pos B. pertussis strains, whereas the Prn-Neg strains induced enriched expression of interleukin- and TNF-signaling genes, as well as other genes involved in immune activation. Multiplex immune assays confirmed enhanced proinflammatory cytokine secretion by Prn-Neg stimulated moDC. Comparison of the proteomes from the Prn-Pos and Prn-Neg strains revealed, next to the difference in Prn, differential expression of a number of other proteins including several proteins involved in metabolic processes. Our findings indicate that Prn-deficient B. pertussis strains induce a distinct and stronger immune activation of moDCs than the Prn-Pos strains. These findings highlight the role of pathogen adaptation in the resurgence of pertussis as well as the effects that vaccine pressure can have on a bacterial population.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Bordetella pertussis/imunologia , Células Dendríticas/imunologia , Transcriptoma , Fatores de Virulência de Bordetella/genética , Adaptação Biológica , Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Vacina contra Coqueluche/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Fatores de Virulência de Bordetella/metabolismo , Coqueluche/microbiologia
20.
Front Immunol ; 12: 626717, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981298

RESUMO

Vaccination during pregnancy is a safe and effective intervention to protect women from potentially severe consequences of influenza and reduce risk of influenza and pertussis in their infants. However, coverage remains variable. In this mini-review we update findings from a 2015 systematic review to describe results from recent studies in high income countries on the uptake of influenza and pertussis vaccination in pregnancy, reasons for vaccine hesitancy and barriers to increasing uptake, from maternal and healthcare provider (HCP) perspectives. Studies reported highly variable uptake (from 0% to 78%). A main facilitator for uptake among pregnant women was receiving a recommendation from their HCP. However, studies showed that HCP awareness of guidelines did not consistently translate into them recommending vaccines to pregnant women. Safety concerns are a well-established barrier to uptake/coverage of maternal immunization; 7%-52% of unvaccinated women gave safety concerns as a reason but these were also present in vaccinated women. Knowledge/awareness gaps among pregnant women and lack of confidence among HCPs to discuss vaccination were both important barriers. Several studies indicated that midwives were more likely to express safety concerns than other HCPs, and less likely to recommend vaccination to pregnant women. Women who perceived the risk of infection to be low were less likely to accept vaccination in several studies, along with women with prior vaccine refusal. Findings highlight the importance of further research to explore context-specific barriers to vaccination in pregnancy, which may include lack of vaccine confidence among pregnant woman and HCPs, and policy and structural factors.


Assuntos
Vacinas contra Influenza/imunologia , Aceitação pelo Paciente de Cuidados de Saúde , Vacina contra Coqueluche/imunologia , Complicações Infecciosas na Gravidez/prevenção & controle , Vacinação , Vacinas contra COVID-19/imunologia , Feminino , Pessoal de Saúde , Humanos , Gravidez , Gestantes , Vacinação/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...